
 

 
HYPERSPECTRAL FEATURE DETECTION ONBOARD THE EARTH OBSERVING 
ONE SPACECRAFT USING SUPERPIXEL SEGMENTATION AND ENDMEMBER 

EXTRACTION 

David R. Thompson (1), Benjamin Bornstein (1), Brian D. Bue (2), Daniel Q. Tran (1), Steve Chien (1), Rebecca Castaño (1) 
 

(1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109 USA,  
Email: firstname.lastname@jpl.nasa.gov 

(2) Rice University, 6100 Main St., Houston TX 77005 USA, Email: Brian.D.Bue@rice.edu 
 
 

ABSTRACT 

We present a demonstration of onboard hyperspectral 
image processing with the potential to reduce mission 
downlink requirements. The system detects spectral 
endmembers and uses them to map units of surface 
material.  This summarizes the content of the scene, 
reveals spectral anomalies warranting fast response, and 
reduces data volume by two orders of magnitude. We 
have integrated this system into the Autonomous 
Sciencecraft Experiment [1] for operational use onboard 
the Earth Observing One (EO-1) spacecraft. The system 
does not require prior knowledge about spectra of 
interest. We report on a series of trial overflights in 
which identical spacecraft commands are effective for 
autonomous spectral discovery and mapping for varied 
target features, scenes and imaging conditions. 
 
1. INTRODUCTION 

To date, robotic space exploration has relied heavily on 
instrument platforms executing scripted command 
sequences with data acquisition and downlink plans 
arranged long in advance.  This is appropriate for static 
lander missions, or for mapping missions whose goal is 
a comprehensive survey.  However, future generations 
of exploration spacecraft may face increasingly dynamic 
and complex environments that would benefit from 
more flexible operations [2].  Examples include: rover 
platforms travelling long distances [3], such as traverses 
already performed by the Mars Exploration Rovers [4]; 
and missions to primitive bodies, such as comet 
rendezvous or potential flyby tours of the Trojan 
objects.  Only a small fraction of the potential targets in 
these environments would ever be measured, and 
observation plans could be revised during the mission.  
Here science data could play a tactical role to improve 
decisions about activities to perform in the next 
command cycle.   
 
These missions could benefit from onboard data 
analysis in several ways [5].  First, onboard analysis 
could summarize the most bandwidth-expensive data 
products and increase the effective information content 
of each communication cycle [5]. This could tell 
operators which data products are worth downlinking 

from the spacecraft, and ensure that key targets were not 
missed. Second, in the most dynamic environments, 
operators might gain additional advantage by shifting 
time-critical decisions across the light time delay so that 
the spacecraft itself recognizes transient targets of 
opportunity and triggers needed response actions such 
as followup measurements [1].  Such needs are greatest 
in situations when round-trip communication is 
impossible, such as flybys or short-lived landers. 
 
Onboard analysis holds special promise for imaging 
spectrometers (also known as hyperspectral imagers). 
Imaging spectrometers typically provide measurements 
in Visible Near Infrared (VNIR) or Infrared (IR) ranges, 
with up to hundreds of bands at spectral resolutions 
down to 10-40nm or better [6,7].  These data provide 
compositional insight over wide areas with 
morphological context, giving invaluable information 
for geologic interpretation. A significant number of 
deep space exploration missions carry these 
instruments.  However, a single hyperspectral scene 
may demand several hundred megabytes of downlink.  
This data volume can be a serious disadvantage for 
certain applications, since it limits imaging 
spectrometers to a very small fraction of their potential 
duty cycles.  Onboard data analysis may help ameliorate 
this [8]. It could autonomously identifying spectral 
anomalies and other targets of interest so that the remote 
explorer can discover features that warrant immediate 
followup measurements.  It can draft maps of surface 
composition, enabling bandwidth-efficient summaries 
where it is not possible to downlink full maps.  
 
Automating hyperspectral analysis for spacecraft is a 
difficult problem.  One major challenge is the unknown 
spectral composition of the target.  Unexpected spectral 
shapes make the targets difficult to specify in advance, 
and planetary spectra typically require rigorous post-
analyses and interpretation by trained analysts.  
Naturally, this is not possible for an autonomous system 
that must recognize these unanticipated features in the 
scene and function correctly on the first try.  Another 
challenge is computational efficiency, since 
computational resources aboard spacecraft are highly 
limited.  Systems using Field Programmable Gate 



 

Arrays (FPGAs) have been developed for spaceflight 
applications [8], but none have yet been deployed to 
orbit. A final complication is that thermal variation and 
unconstrained imaging conditions make the noise level 
much worse than airborne applications.  For these 
reasons, proofs-of-concept are needed to demonstrate 
that meaningful hyperspectral analysis can indeed be 
performed onboard a spacecraft.   
 
This paper shows some preliminary results from a 
prototype system for autonomous hyperspectral 
summary and mapping, which we was deployed to the 
Earth Observing One (EO-1) spacecraft [9] in the fall of 
2011.  It has been in operational use since this time, 
performing multiple overflight tests over a variety of 
scenes with mineralogical and astrobiology interest.  
Our approach uses a superpixel endmember detection 
method [10] to identify the most salient spectra in each 
scene.  An initial segmentation provides resilience to 
noise while reducing computation requirements of 
subsequent processing.  Then, an endmember detection 
procedure finds the spectra representing the strongest 
distinctive spectral signatures.  This reliably retrieves 
both representative and anomalous features.  The 
spacecraft then computes the location and extent of 
these spectral signatures, forming a simple but efficient 
summary map.  The following section describes the 
basic analysis procedure, detailed previously in 
Bornstein et al [11].  We then describe initial 
demonstration results, and close with a discussion of 
performance and the implications of these trials for 
future technology development and mission use. 
 

2. APPROACH 

The Hyperion instrument aboard EO-1 is a 
hyperspectral imager with 220 bands ranging from 
Visible to Short Wave Infrared (SWIR) frequencies. 
During its extended mission it has hosted a range of 
autonomous data analysis software for detecting 
features such as floods and volcanism through the 
Autonomous Sciencecraft Experiment (ASE) [12-15]. 
We have integrated spectral endmember detection and 
mapping into this system.   The basic procedure appears 
in Figure 1. The normal EO-1 image downlink protocol 
can transmit a full image within a few days.  In contrast, 
the onboard system creates a summary product less than 
50KB in size, which fits into a direct downlink within 6 
hours of acquisition. 
  
2.1. Preprocessing 

The first step of the onboard processing transforms the 
raw radiance data into a pseudo-reflectance product.  
This computation is based on distance to the sun, solar 
zenith, and the solar input in each spectral channel.  The 
method is identical to onboard reflectance computation 
used in other ASE experiments and described at greater 
length in [16].  During this conversion the preprocessing 
selects 12 channels from the 220 Hyperion instrument 
spectral bands.  This satisfies constraints on working 
memory based on the flight avionics system and the 
intrinsic hardware capabilities of the EO-1 processor.  
An additional constraint is that one band from each of 
two detectors must be loaded.  The Hyperion instrument 
has two different detector elements covering the visible 
and infrared regions. In practice, the reflectance values 
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Figure 1: Procedure for onboard 
processing and summary downlink 
by EO-1.  The procedure has three 
steps.  In step (1) preprocessing, the 
image is reduced to a 11-band 
subset to satisfy EO-1 software 
constraints. Step (2), superpixel 
segmentation, transforms the image 
into a new representation based on 
spectrally-homogeneous contiguous 
areas. This improves noise while 
reducing the data set size by a factor 
of ~100.  In step (3) endmember 
detection, numerical methods find 
numerically extreme superpixels 
corresponding to the spectral 
endmembers. The automatic feature 
detection acts as a “shortcut” to the 
standard downlink, permitting a 
summary product of 50KB to be 
delivered within 6 hours of 
acquisition.  EO-1 Image: 
NASA/GSFC  



 

the detectors can differ significantly.  This could cause 
scaling problems for purely data-driven analyses that 
used channels from both detectors simultaneously.  As 
compensation, we limit our analysis to one of the two 
detectors.  After satisfying the constraint that both 
detectors be queried this leaves a free allowance of 11 
channels in either spectral region that are available for 
use onboard.  The band selection can change with each 
acquisition if required.  All of the experiments in this 
work used one of two band set options that appear in 
Table 1.  The subsets are a compromise that provides 
even spectral coverage over organic and mineral 
absorption features, while avoiding specific channels 
that appeared particularly noisy in downlinked images. 
 

SWIR Band nm  VNIR Band nm 
196 2113.0         16 508.2 
198 2133.2  20 548.9 
202 2173.5  25 599.8 
204 2193.7  30 650.7 
205 2203.8  33 681.2 
207 2224.0  36 711.7 
208 2234.1  39 742.3 
211 2264.3  42 772.8 
214 2294.6  45 803.3 
219 2345.1  48 833.8 
221 2365.2  52 874.5 

Table 1: Channels used for the Short Wave Infrared 
(SWIR) and Visible Near Infrared (VNIR) band sets. 
 
The preprocessing operates on a subframe of the typical 
Hyperion swath that is 1024x256 pixels in size.  It is 
centered to within spacecraft pointing accuracy on the 
overflight latitude/longitude location.   
 
2.2. Superpixel Segmentation 

The preprocessed data product is not yet suitable for 
unsupervised endmember detection.  It exhibits artifacts 
such as column noise and edge effects that are typical of 
orbital hyperspectral remote sensing.   Individual pixels 
may also have high levels of shot noise and intrinsic 
white measurement noise. Moreover, the image 
subframe containing over 256K pixels is still too large 
for an efficient endmember analysis: such algorithms 
typically scale polynomially, and are too intensive for 
the 20MHz EO-1 flight computer.  Even simpler 
operations such as image compression typically take up 
to an hour for a standard Hyperion image.  
 
These considerations motivate a second step in which 
we transform the pixelwise representation to a set of 
spatially contiguous segments.  Superpixel 
representations [10] oversegment the image into groups 
of contiguous pixels that are spectrally homogeneous. It 
is natural to interpret these as physical features (or parts 
of physical features).  The spatial contiguity constraint 
makes it possible to compute these regions very quickly 

using spatially-local comparisons. Here we use an 
agglomerative segmentation algorithm [17] based on 
disjoint set merging, which scales favorably by n log n 
for n pixels. It can accommodate any distance measure. 
Here we use Euclidean distance, but recent studies 
suggest that learned metrics can achieve even better 
results by learning task-specific notions of spectral 
similarity [18].  After identifying superpixel areas, the 
onboard system represents each segment using its 
average spectrum.  Assuming that each the superpixel 
lies entirely on a physically homogeneous feature, the 
underlying reflectance is the same in all pixels. 
Averaging achieves a noise reduction according to the 
square root of the superpixel size [10].  This new 
representation also reduces the dataset size by multiple 
orders of magnitude, uniquely enabling the endmember 
detection procedure that follows.  
 
2.3. Endmember Detection 

Spectra observed in remote sensing data are often 
assumed to obey an area (geographic) mixing 
assumption.  Here the scene is comprised of a small 
handful of endmember materials [19]. The endmember 
reflectances combine linearly in proportion to their area 
of extent within the ground footprint of each pixel to 
generate the measured reflectance.  We also make 
another simplifying assumption that the “purest” 
examples of each endmember appear somewhere in the 
scene.  In other words, we assume that we could 
reconstruct all the spectra in the data set by linear 
combination of these pure spectra if appropriate mixing 
ratios were known.  
 
The third stage of EO-1 processing uses a Sequential 
Maximum Angle Convex Cone (SMACC) strategy to 
find the endmembers [20].  This method expands a basis 
set of endmembers, iteratively maximizing the volume 
of their associated convex cone.   Intuitively, the 
extreme points in this convex region are linear 
endmembers and the larger their volume the more 
distinct spectra their linear combinations can represent. 
Many endmember detection strategies are available, and 
we refer the reader to the taxonomy of [21].  We find 
SMACC effective for this system because it is efficient, 
deterministic and reproducible.  Moreover, it is a 
sequential approach that can return any number of 
endmembers in ranked order.  This contrasts with 
“simultaneous” algorithms that fit all endmembers at 
once and require that the user know the number of 
endmembers in advance.   
 
In this work we typically compute the top 30 
endmembers.  This is far larger than the intrinsic 
dimensionality of the Hyperion data, which is typically 
less than 10.  Extra endmembers provide a margin of 
error and allow for noise and outlier features that are not 
compositionally meaningful. Some noise is unavoidable 



 

due to clouds, shadows, and other high-variance areas.  
Despite the superpixel representation’s noise reduction, 
some of these features inevitably manifest as 
numerically-extreme data points that appear in the 
endmember list.  Moreover, the spectra of a scene do 
not always obey a pure-pixel linear mixing assumption, 
and compositionally redundant endmembers may also 
be selected.  Computing an overcomplete set of 30 
endmembers provides a margin of error so that unique 
physically meaningful features are not crowded out by 
these other artifacts.  It is typically straightforward to 
identify the important and redundant spectra on the 
ground, since the onboard system has already performed 
the essential work of finding the basis spectra and their 
locations. The extra endmembers impose little 
bandwidth or computation cost, and the bandwidth 
needed by their spectra is negligible relative to the other 
summary products. 
 
Figure 2 shows an example segmentation based on an 
actual overflight of Blood Falls, Antarctica.  This scene 
contains a hidden feature of interest: bright red iron 
oxidizes visible in a saline outflow from a subglacial 
system near Taylor Glacier [22].  Panel A shows the 
context image, while panel B shows the superpixel 
representation.  Here homogenous regions of land and 
ice have been grouped together into clusters. This 
facilitates the efficient detection of endmember spectra.  
The region of the outflow appears as a distinctive 
spectral endmember identified by the superpixel colored 
red in panel C.  This visualization was produced based 
on the map that the system generated onboard and 
downlinked within hours.  Panel D shows an image 
from the surface. 
 
2.4. Spectral Angle Mapping 

After endmember detection the system computes a 
spectral angle match between each superpixel and the 
entire set of endmembers.  The spectral angle is simply 
a normalized dot product measuring the similarity 
between each spectrum and each endmember.  It 
produces a classification map relating each pixel of the 
original image to the best-matching endmember 
spectrum.  The final downlink includes multiple 
summary products: 
1. The complete list of endmember spectra, with their 

pseudo-reflectance values in the 11 selected bands, 
2. The pixel locations of these endmember superpixels 

in the scene, identifying the locations of the salient 
features, 

3. An integer map relating every pixel in the image to 
the endmember spectrum that matches it best.  It 
serves as a simple draft compositional map.  

These products have value as an efficient summary, but 
could also enable onboard decision-making to respond 
to unexpected spectra. For example, the system could be 
instructed to return a full image on detection of a 

A B 

C

D 

 
Figure 2: Blood falls overflight illustrating the 
detection process. (A) Original 1024x256 pixel 
pseudoreflectance image (here, three visible RGB 
channels are shown).  (B) Superpixel segmentation 
identifies contiguous spectrally-homogeneous areas.  
(C) The superpixel corresponding to a salient 
endmember spectrum at the outflow location. (D) 
The blood falls feature as viewed from the ground 
Image: United States Antarctic Program. 
 
 
Scene Bands Detections 
1. Cuprite SWIR Alunite, Muscovite, Calcite 
2. Cuprite SWIR Alunite, Muscovite, Calcite, 

Kaolinite 
3. Steamboat  SWIR Silica, Alunite/Kaolinite 
4. Mammoth VNIR Thermal springs [26] 
5. Mammoth VNIR None (70% cloud cover) [26] 
6. Blood Falls VNIR Glacial outflow 
Table 2: Detection results from EO-1 test overflights. 



 

specific target endmember, or upon the appearance of a 
wholly novel spectral signature.   
 
3. EXPERIMENTAL RESULTS 

We commanded test overflights during the Fall of 2011 
over several sites of mineralogical interest, including 
well-studied locales where extensive ground truth data 
was available.   These include: Cuprite, a mining district 
in Nevada, which contains a range of minerals with 
SWIR absorption features [23,24]; Steamboat Springs, 
an active thermal system with a terrace and exposed 
SWIR mineral signatures [25]; Mammoth Hot Springs, 
an active thermal spring system in Yellowstone 
National Park, USA [26]; and Blood Falls, the saline 
subglacial outflow appearing in Figure 2 [22]. Apart 
from the overflight target latitude and longitude, and 
the choice of either the VNIR or SWIR band set, we held 
all parameters of the detection system constant across 
all trials.  Table 2 shows the complete list of runs.  All 
resulted in successful detections, except for the second 
overflight of Mammoth Hot Springs.  In that case there 
was no endmember corresponding to the hot springs 
feature; the system was confused by overwhelming 
cloud cover (over 70% of the scene, according to the 
standard Hyperion product estimate) so these features 
dominated the endmember list.  
 
Figure 5 shows a comparison of the two Cuprite 
overflights with canonical maps produced by Kruse et 
al. of the same scene using AVIRIS and Hyperion data 
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Fig. 14. MTMF mineral maps for (left) AVIRIS and (right) Hyperion produced for the endmembers in Fig. 12 for the Cuprite, NV site. Colored pixels show the
spectrally predominant mineral at concentrations greater than 10%.

produced for the northern Death Valley site: 1) a detailed min-
eral map showing minerals and mineral variability (Fig. 15) and
2) a basic mineral map produced by combining occurrences of
similar minerals (Fig. 16).

C. Discussion

Visual comparison of the AVIRIS and Hyperion mineral
maps for both sites shows that Hyperion generally identifies
similar minerals and produces similar mineral-mapping results
to AVIRIS. Our results indicate, however, that the lower SNR

of the Hyperion data does affect the ability to extract charac-
teristic spectra and identify individual minerals (Figs. 12–15).
Specifically, compare the Hyperion buddingtonite spectrum
in Fig. 12, which does not clearly show the characteristic
buddingtonite spectral feature shape near 2.11 m, to the
well-resolved feature extracted from AVIRIS (Fig. 12) and
other hyperspectral aircraft data [11], [14]. Note that while it
generally appears that the difference in pixel size (30 m for
Hyperion versus approximately 16 m for AVIRIS) is minimal
(causing only slight loss of spatial detail in Hyperion results),
some of the spectral difference could be an effect of the
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Sept. 19, 2011 
Overflight  

Sept. 27, 2011 
Overflight  

 
Figure 5: Two overflights of Cuprite, Nevada. We show products based on the fully-autonomous onboard 
detection and mapping (Extreme and Center Left).  Detections include Alunite (A), Mucovite (B), and Calcite 
(C).  The red area contains a mixture with features of Kaolinite and Alunite spectra.  We color the image to 
show the correspondence with manually-produced maps of the same region based on AVIRIS (Center Right) 
and Hyperion (Extreme Right).  Map image courtesy Kruse et al. [24]. 

A!

B!

C!

Alunite / 
Kaolinite 

2100 2150 2200 2250 2300 2350 2400
Wavelength (nm)

R
ef

le
ct

an
ce

Muscovite 

Calcite 

	
 
Figure 4: Endmember spectral features appearing 
in the Cuprite Scene.  Letters correspond to the 
map regions above.  All endmember spectra are 
interpretable as having diagnostic spectral shapes 
corresponding to the target mineral classes.  
Alunite contains an additional absorption feature 
near 2320wn which is not evident in this spectrum 
do to sparse spectral sampling.  However, the 
feature is visible in the full-spectrum downlink and 
confirms the interpretation. 



 

[24].  We select colors to highlight the correspondences 
between the different mapping runs.  We note that there 
is some intrinsic variability in the detection result based 
on factors such as Signal to Noise, solar zenith, and 
atmospheric conditions. Many of the same features are 
discovered by the onboard system, including Alunite, 
Muscovite, and Calcite spectra.  The downlinked 
spectra associated with these regions appear in Figure 4.   
 
Figure 5 shows the run over Steamboat Springs, 
Nevada, which also evidences good agreement with 
formal mineralogical maps of Kruse et al.  [24].  The 
two regions colored regions show the extent of Silica 
and Alunite/Kaolinite features that were automatically 
detected onboard.  As before, the manual maps used in 
the comparison use extensive ground-truth analysis and 
an expert’s understanding of the site.   
 
4. DISCUSSION AND CONCLUSIONS 

Initial results of the EO-1 system are encouraging; to 
date, the system has proven effective for both target 
detection and scene summary, for both dynamic and 
mineralogical features of interest.  To our knowledge, 
the work described here is the first instance of onboard 
spectral mapping in which the spacecraft detects outliers 
that were not anticipated in advance.   
 
While the system is limited by intrinsic hardware and 
software constraints, it offers an initial proof-of-concept 
for the techniques and a starting point for future 
progress.  It is likely that future systems will use some 
combination of lossy compression, endmember 
detection, and matched filtering [27].  Such systems 
may be implemented in more specialized hardware such 
as FPGAs or multi-core architectures.  Advances in data 
throughput will permit analysis of more spectral bands, 
improving total SNR and mapping performance.  The 
methods we describe here may also apply to multiband 
framing cameras analogous to the MER Pancam or the 
OSIRIS instrument aboard the Rosetta Spacecraft.  The 
dual ability to generate summary maps and to identify 
targets of opportunity for followup measurements can 
be a powerful tool to surmount communications limits 
and facilitate agile remote exploration. 
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