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ABSTRACT   

For the flooding seasons of 2011-2012 multiple space assets were used in a “sensorweb” to track major flooding in 
Thailand.  Worldview-2 multispectral data was used in this effort and provided extremely high spatial resolution (2m / 
pixel) multispectral (8 bands at 0.45-1.05 µ m spectra) data from which mostly automated workflows derived surface 
water extent and volumetric water information for use by a range of NGO and national authorities.  We first describe 
how Worldview-2 and its data was integrated into the overall flood tracking sensorweb.  We next describe the use of 
Support Vector Machine learning techniques that were used to derive surface water extent classifiers.  Then we describe 
the fusion of surface water extent and digital elevation map (DEM) data to derive volumetric water calculations.  Finally 
we discuss key future work such as speeding up the workflows and automating the data registration process (the only 
portion of the workflow requiring human input). 
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1. INTRODUCTION  
Rapid growth in available commercial remote sensing can enable greatly enhanced environmental monitoring.  Recently 
launched satellites make available extremely high spatial resolution multispectral imagery.  However in order to provide 
high spatial resolution data, these satellites are point-and-shoot, that is to say that they are typically targeted observations 
that must be requested prior to overflight. 

 Sensorweb operations is a concept of operations in which data from multiple satellites is assimilated to better 
track some event or environmental phenomenon.  In the sensorweb concept, data is assimilated from satellites and other 
sources, and used to model and track the phenomena of interest and drive future targeting.  The key is that the modeling 
and tracking provide timely and detailed information.  The desire to provide detailed information means that the highest 
spatial resolution information is typically desired.  The desire to provide timely information means that ideally the data 
acquisition, processing, and modeling is done automatically.  If future targeting can be automated (e.g., [Chien et a. 
2011]), subsequent data will enable continuous precise modeling. 

Worldview-2 is a satellite launched and operated by DigitalGlobe that has extremely high-resolution (2m / 
pixel) spatial resolution combined with significant multispectral (8 bands at 0.45 – 1.05 µm) capability.  In this paper we 
explore the use of Worldview-2, in a sensorweb used to track flooding in Thailand over the period 2010-2012.  Flooding 
has a tremendous impact on humanity and is worldwide in scale.  From p. 348, [NRC 2007] “Floods are among the most 
destructive of natural disasters.  From a monetary standpoint, flood damages in the United States averaged around $5 
billion per year in the 1990s in 1995 dollars (Table 3.1 in Pielke et al., 2002). Outside the United States, the impact is 
even more striking; flood losses globally increased 10-fold (inflation-corrected) over the second half of the 20th century 
to a total of around $300 billion in the decade of the 1990s [Kabat and van Schaik, 2003].”  

                                                
* Contact author: steve.chien@jpl.nasa.gov, contact any author at: firstname.lastname@jpl.nasa.gov 
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Thailand (as well as greater southeast Asia) is particularly prone to flooding as observed during the sensorweb 
operational usage in the 2010 and 2011 flooding seasons in Thailand.  The Thailand flooding of October-November 
2010 [MCOT 2010, Bangkok Post 13 Nov 2010, Wikipedia 2010] was responsible for over 200 deaths, over $1.67 
Billion USD damage, and affected over 7 million people [CNN 2010].  The Thailand flooding in 2011 was even more 
severe (See Figure 1) accounting for over 600 deaths and $45.7 Billion USD damage [World Bank 2011].  As this article 
goes to review in February 2012 the floods have not yet fully receded and the full extent of the damage is still not yet 
known. 

Flooding is also a key part of the global hydrologic cycle. “The scientific challenge posed by the need to observe the 
global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and 
fluxes.” [NRC, 2007].   

This paper describes how Worldview-2 multispectral data can be used to automatically map surface water extent areas 
with very high (2m) spatial resolution.  We then describe how this surface water extent map can be combined with 
digital elevation map data to estimate water volume for flooded areas. This capability, within the deployed flood 
monitoring sensorweb represents a unique capability in flood monitoring. 

2. AUTOMATED FLOOD PROCESSING OF WORLDVIEW-2 DATA  
 

2.1 Worldview-2 data, Radiometric and atmospheric correction 

The Worldview-2 data we used for this study was acquired in the southeast Asia region (principally focused on 
flooding of the Chao Praya river near Bangkok, Thailand) in the November 2011 timeframe.  The scenes are typically 6 
km by 16 km at 2m/pixel and 8 spectral bands.  These images are first converted to top-of-atmosphere reflectance 
[DigitalGlobe] for subsequent processing. 

2.2 Surface water extent calculation 

We have used support vector machine (SVM) [Schölkopf & Smola, 2002] techniques to learn classifiers to automatically 
detect flooded areas in WorldView-2 (WV-2) data.  We process images of flooded regions converted to reflectance as 
described above.  In order to train the SVM classifier, we first hand labeled several images for border, water, and land 
(including urban) areas. 

We experimented with different SVM kernels and parameters, and have trained SVM classifiers using either (a) a feature 
set of the 8 multispectral WV-2 bands and (b) a feature set of each of the 28 ratios between bands. Labeling, training, 
validation (quantitative and qualitative) and kernel-parameter selection, were done through the Pixellearn tool [MLIA].  
In our experience, linear kernels often produced excellent results for the scene they were trained on, but performed 
poorly on other scenes.  Through manual and qualitative selection, a polynomial kernel of degree 5 and a cost factor (C) 
of 1.0 was chosen for satisfactory performance across multiple scenes. Running directly within PixelLearn, this classifier 
could classify a scene within about five minutes.  We experimented with training a more sophisticated classifier to 
distinguish additional classes (urban areas and clouds), but this did not generalize well to multiple scenes.  For this 
extended classifier, the runtime within PixelLearn increased from several minutes to about two hours.  We also tested 
this classifier with a classification program written in Python, where runtime increased to up to 1.5 days for a single 
WV-2 scene. 

We trained the 5th-degree polynomial classifier using the three classes (border, water, land) on a scene of Bangkok taken 
on November 8, 2011 (Catalog ID: 2020010091157400).  We ran this classifier for two other scenes taken on November 
3 and November 8 (Catalog IDs: 2020010090403A00 and 2020010091155C00, respectively).  The confusion matrices 
for the 3-class (border, water, land) 5th-degree polynomial SVM run on the hold-out scenes of Bangkok are shown in 
Table 1 and Table 2.  We also ran this protocol using the band ratios as the features with the results shown in Tables 3 
and 4.  The November 3 scene and its SVM classification are shown in Figure 1 (upper-left and lower-right, 
respectively). 
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We also trained using a linear and radial basis function (RBF) / Gaussian kernel SVM.  The linear SVM works well for 
the scene it is trained on but performs poorly for other scenes.  Surprisingly the RBF SVM has inconsistent results, 
sometimes performing similar to the polynomial and sometimes worse. 

In addition to the SVM, we ran a thresholding algorithm applied to the ratio of WorldView-2’s NIR1 / green bands 
(selected because of their similarity to the bands used in [Ip et al. 2006, Chien et al. 2011].  Regions with a ratio above 
the threshold were marked as land, and those below as water.  A threshold of 0.8 yielded a water classification map 
comparable to that for the SVM, shown Figure 1 (lower left).   

Table 1: Confusion Matrix for SVM-classified scene taken November 3.  Features = bands.  Kernel=degree 5 poly 

Class Unlabeled Border Water Land 
Unlabeled 0 13156222 20395227 45959337 

Border 0 223 0 0 
Water 0 0 6847 338 
Land 0 0 0 1044 

 

Table 2: Confusion Matrix for SVM-classified scene taken November 8.  Features = bands.  Kernel=degree 5 poly 
Class Unlabeled Border Water Land 

Unlabeled 0 25639043 12807455 22806048 
Border 0 349 0 0 
Water 0 0 2206 287 
Land 0 0 3 3110 

 

Table 3: Confusion Matrix for SVM-classified scene taken November 3.  Features = band ratios.   Kernel=degree 5 poly 

Class Unlabeled Border Water Land 
Unlabeled 0 13156222 19540101 46728134 

Border 0 223 0 0 
Water 0 0 6845 340 
Land 0 0 0 1044 

 

Table 4: Confusion Matrix for SVM-classified scene taken November 8.  Features = band ratios.  Kernel=degree 5 poly 

Class Unlabeled Border Water Land 
Unlabeled 0 25639043 12601354 22999969 

Border 0 349 0 0 
Water 0 0 2270 221 
Land 0 0 4 3109 
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2.3 Volumetric water calculation 

We have created a workflow that uses surface water extent classification results from a sensor (including MODIS, ALI, 
WorldView-2, or Radarsat2 raster GeoTIFFs), calculates pixel heights using a digital elevation model (DEM), and 
estimates the depth of flood-water pixels by estimating their elevation from their boundary.  Because the program reads 
classified images as input, it generalizes well to a large suite of instruments: any classification data that can be saved in a 
GeoTIFF can be used in this approach.  We tested this system using scenes of flooding in Bangkok during November 
2011, and obtained a DEM of the Bangkok & Ayutthaya region of Thailand, with 5m horizontal and 1m vertical 
resolution, from Thailand's Hydro and Agro Informatics Institute (HAII). 

The procedure used to estimate water depths of flooded pixels is roughly as follows: 

1. Identify all land, water, and no-data pixels from classification results, and all pixels that lie on the boundary 
between land & water bodies.  Boundary pixels can include both land pixels next to water, and water pixels 
adjacent to land; our software includes a switch to select which pixels constitute the boundary.  No-data pixels 
represent anything that is not land or water, including image borders and clouds. 

2. Identify all unique, 8-connected water bodies in the image, and create a grid f with the same size as the input 
image, containing the feature label for each pixel (i,j).  A feature number of f[i,j] = 0 indicates that the pixel is 
not a water pixel. 

3. For all water and boundary pixels (i,j), estimate the height of the pixel h[i,j], using the following procedure.  
Given a geolocated DEM and the input classification image’s horizontal resolution R (in meters), we estimate 
height by finding the nearest pixel in the DEM corresponding to the lat-lon location of (i,j) in the classification 
map, constructing a box around this pixel with side length R, and setting h[i,j] to the average of all the DEM 
pixel values found inside this region. 

4. For each water body f, estimate water elevation: 

1. Store a list of elevations of boundary pixels for the feature, boundary[f] 

2. Initialize feature elevation E[f] = 0 

3. if (length(boundary[f]) > 0) then E[f] = mean(boundary[f]) 

5. For all water pixels (i,j), calculate depth: 

1. if( f[i,j] > 0 ) then d[i,j] = max(0, E[ f[i,j] ] – h[i,j]) 

The program, written in Python, outputs a GeoTIFF giving per-pixel water depth, with the same resolution and 
geolocation as the input classification map.  Computing the water depth map for a classified WorldView-2 scene takes 1-
2 hours.  The water depth output for the scene shown is in the upper-right corner of Figure 1 The total water volume 
calculated within this scene is approximately 27,872,000 cubic meters, and the average depth of flooded pixels is 0.64 
meters. We computed the depth map for this scene and forwarded it to HAII during the Thailand flood season.  We have 
computed the water depth map for other scenes, but we have not distributed more of these products. 

Several factors can impact the accuracy of this method.  The classification of WV2 images itself is not perfect, and not 
all land and water pixels can be reliably identified. The DEM data is also noisy; regions that would be expected to be flat 
in practice can be a mixture of pixels that differ by 1 meter in elevation.  In the DEM itself, a 1 meter jump in elevation 
represents a very large change compared to the roughly 2 meter average elevation for the city of Bangkok.  An elevation 
model with higher resolution would reduce noise and error in the water depth results. 

The water volume program can also read cloud pixels from input surface water extent maps, although as described 
previously, we did not use these for WorldView-2. It is difficult to decide what to do with cloud pixels if they are used, 
since it is unknown if they are flooded or not. It would be desirable to determine the status of these pixels based on the 
status of their neighbors.  Currently, cloud pixels are treated as if they contain no data. 
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Finally, this method assumes that water level can be inferred by equating it with the elevation of surroundings, but this 
may not necessarily be true in urban environments. 



 
 

 
 

 

 

3. USE OF WORLDVIEW-2 DATA IN THAILAND CAMPAIGN 
3.1 Campaign 

During the 2011-2012 Thailand flooding scene numerous Worldview-2 scenes of the flooding in the Bangkok region 
were acquired.  The table below indicates the scenes we were able to process – all of which were from the November 
2011 timeframe.  These sixteen (16) images allow for precise tracking of the flood damages and extent in the lower Chao 
Praya region near Bangkok, Thailand.  During this time period and afterwards, we processed this flood related data (as 
well as other acquired data) and delivered surface water extent and water volume estimation products to HAII and 
Thaiflood.com for subsequent distribution to interested institutions. 

 

Table 5: Worldview-2 Scenes processed from Bangkok, Thailand Flooding Campaign, November, 2011 
 

 
 
3.2 Related Work  

A number of flood related products such as surface water extent have been derived from remote sensed imagery.  
MODIS [Brakenridge and Anderson 2005, DFO, Carroll et al. 2009, Doubleday et al. 2011] enables great coverage but 
moderate resolution (250/pixel).  The Earth Observing One Advanced Land Imager (EO-1/ALI) offers better spatial 
resolution (30m/pixel) with reduced temporal and spatial coverage [Chien et al. 2011, Doubleday et al. 2011].  Earth 
Observing One Hyperion offers excellent spatial resolution with poor spatial coverage [Ip et al. 2006].  A range of radars 
offer excellent all weather capabilities but with modest coverage and resolution [Doubleday et al. 2011a,b, Briscoa et al. 
2008, Kussul et al. 2011, Dubois et al. 1995].  The Dartmouth flood observatory has used AMSR-E [DFO] and Quikscat 
as well to track flooding but with lower spatial resolution. 

3.3 Lessons learned and future work 

From the November 2011 tracking of Bangkok flooding, we also have multispectral imagery from Ikonos (5 scenes) and 
GeoEye (3 scenes).  We are exploring processing this data using both band ratio and SVM surface water extent 
classification methods to allow better temporal tracking of the flooding events.  Additionally, we have access to some in-
situ telemetered data and hydrological models via a collaboration with the Hydro Agro Institute of Thailand. This in-situ 
data and modeling could further enhance flood tracking.  We also wish to explore if processing pan-sharpened data 
would improve accuracy.  Finally, TRMM provides cumulative rainfall data that could also be integrated into the flood 
modeling to improve accuracy. 



 
 

 
 

 

4. CONCLUSIONS 
We have described the use of Worldview-2 in an earth observing sensorweb to track flooding in Thailand during the 
November 2011 flooding.  In this sensorweb Worldview-2 provided multispectral data of very high spatial resolution 
(2m/pixel).  We used SVM machine learning techniques to train classifiers to process this imagery into surface water 
extent maps.  These surface water extent maps were then combined with digital elevation map (DEM) information to 
estimate water volumes.  These flood products were automatically delivered to relevant Thailand institutions to support 
tracking and decision-making activities.  These sensorweb techniques and ongoing enhancements represent a powerful 
tool in tracking and mitigating natural hazards. 
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