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Abstract—Multicore processing promises to be a critical 
component of future spacecraft. It provides immense 
increases in onboard processing power and provides an 
environment for directly supporting fault-tolerant 
computing.  This paper discusses using a state-of-the-art 
multicore processor to efficiently perform image analysis 
onboard a Mars rover in support of autonomous science 
activities. 
 
Techniques for onboard rover-data processing provide 
significant mission benefits for both data prioritization and 
opportunistic science. These capabilities automatically 
analyze collected data (e.g., visual images) onboard a 
spacecraft and then use that analysis to either prioritize 
collected data for downlink or identify new science 
opportunities for collection of valuable science data. 
Onboard data analysis is already in use on the Mars 
Exploration Rover (MER) mission rovers to autonomously 
select and gather new data on interesting rock targets. 
 
One of the key elements of this MER capability is 
identifying rocks in MER navigation camera images. 
Surface rocks are one of the primary targets for science 
investigation on the surface of Mars. Automated 
identification of these rocks is a critical element of rover 
autonomous science algorithms but is also one of the most 
time intensive. To enable better performance on future 
missions, this capability has been adapted to the Tilera 
TILE64TM multicore processor. This paper discusses how 
this adaption was performed as well as presenting results on 
performance improvements provided through the use of 
multiple cores.1 2 
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1. INTRODUCTION  

Multicore processors could provide future spacecraft 
immense increases in onboard processing performance and 
an environment for directly supporting fault-tolerant 
computing.  As part of a three-year research and technology 
development initiative we are investigating the detailed 
benefits of onboard autonomy and multicore computing for 
future NASA missions. 

Long-range driving, increased autonomous operations, and 
onboard science have been repeatedly identified as needed 
capabilities for many future rover missions, including the 
planned 2018 Mars Astrobiology Explorer-Cacher (MAX-
C) Rover Mission and the planned Mars Sample Return 
(MSR) Rover Mission. These future missions have 
significant distance driving requirements as well as goals 
for increased science. Multicore computing will enable the 
efficient execution and coordination of rover activities.  
Further, the ability to rapidly perform onboard science will 
be beneficial to a large class of missions. Other relevant 
mission concepts include future missions to Titan, Europa, 
Venus and other Mars missions. These missions may have 
in-situ and/or orbital spacecraft.. 

We are adapting three high-level autonomy capabilities for 
current and future rover surface missions to a multicore 
processor and performing detailed performance evaluations. 
We chose each capability for its unique, and 
complementary, parallelization challenges.  The first 
capability is the Rock Segmentation Through Edge 
Regrouping (ROCKSTER) rock and target detection 
algorithm, which is currently in use onboard the MER 
Opportunity rover as a critical part of the larger onboard 
science autonomy system, AEGIS (Autonomous 
Exploration for Gathering Increased Science) [1].  
ROCKSTER has many of the hallmarks of a classic machine 
vision algorithm and, as such, is well suited to data 
parallelization.  We will focus on our experiences adapting 
ROCKSTER to the 64-core Tilera TILE64TM multicore 
platform [6] throughout most of this paper.  The National 
Reconnaissance Office’s OPERA program has contracted 
with Boeing to develop MAESTRO, a 49-core, radiation-
hardened Tilera-class processor.  As such, MAESTRO will 
provide a reasonably direct space flight qualification path 
for algorithms ported to the Tilera multicore platform. 
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Over the next two years, we will also adapt a visual texture 
and onboard planning and scheduling algorithms to the 
Tilera multicore platform.  Visual texture is another 

machine vision algorithm but one that lends itself even more 
easily to task-based parallelism (e.g. one scale-orientation 
filter per core).  Onboard planning and scheduling is 
another enabling mission technology that provides 
capabilities for onboard sequence modification and resource 
management. However its adaptation to multicore is 
challenging since there are multiple ways the underlying 
algorithm and computation could be migrated to a multicore 
processor. 

Section 2 gives an overview AEGIS to provide context for 
the ROCKSTER algorithm and also to give a flavor of current 
state-of-the-art spacecraft autonomy.  Section 3 introduces 
ROCKSTER in its original serial form.  Section 4 describes 
the TILE64TM processor and platform and also its extension 
to the space-qualified MAESTRO processor.  Section 5 
details ROCKSTER parallelization.  Section 6 presents 
multicore performance results.  Finally, Section 7 closes 
with a summary, conclusions, and areas of future work. 

2. AEGIS SYSTEM 

The Autonomous Exploration for Gathering Increased 
Science (AEGIS) system provides autonomous deployment 
of science instruments that target specific terrain features 
[1]. A number of rover remote sensing instruments, such as 
the MER Mini-TES spectrometer, have a very narrow field-
of-view and thus require selection of specific focused 
targets for sampling. Selecting targets for these instruments 
by mission personnel on Earth is currently a lengthy 
process. Typically operators will manually identify the 
targets in images that have already downloaded on a 
previous sol (Martian day). These context images are 
collected with wide field of view (FOV) cameras such as 
the MER navigation cameras, which have a 45 degree FOV, 
or the MER panoramic cameras in a full-frame low-
resolution (single filter) mode, using a 16 degree FOV. 
After reaching an end-of-day location, the rover performs 
only untargeted data collection until the context images can 
be analyzed and new measurement commands uplinked.  At 

 

 
Figure 1 – AEGIS Process Pipeline 

When AEGIS is sequenced, the above series of steps is executed onboard the MER Opportunity rover. Parameters 
can be set during ground command sequencing to specify navigation camera pointing, the “target rock signature” 
(e.g., rocks of large size and low albedo), and settings for the panoramic camera (e.g., what filter set to use).  
ROCKSTER is the first AEGIS data processing step (target dection, second block) and is thus critical for all 
subsequent AEGIS operations.  As the most computationaly intensive aspect of AEGIS, ROCKSTER is a prime 
candidate for multicore parallelization. 
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best this will happen on the next sol, but it may never 
happen if it is decided the rover should immediately 
proceed to a new location due to other goals or engineering 
constraints. 

By analyzing image data onboard, AEGIS can 
autonomously select targets for these instruments and 
execute a set of measurement activities. These techniques 
could be used, for example, on the Mars Science Laboratory 
(MSL) mission to select targets for the ChemCam 
spectrometer instrument to sample at the end of a long rover 
drive. For MER AEGIS has demonstrated taking additional 
measurements with the panoramic camera in a quarter-
frame high-quality (multiple filter) mode, which uses a 4 
degree FOV. 

AEGIS is run as part of the MER onboard flight software. 
All AEGIS components run onboard the MER 20 MHz 
RAD6000 flight processor, which has an early PowerPC 
instruction set, with 128 MB of RAM and 256 MB flash 
memory. AEGIS was required to run using less than 4 MB 
of RAM to ensure other onboard processes were not 
impacted. 

AEGIS was originally developed as part of a large 
autonomous science framework called OASIS (Onboard 
Autonomous Science Investigation System) [2]. OASIS is 
designed to operate onboard a rover identifying and reacting 
to serendipitous science opportunities. OASIS analyzes data 
the rover gathers, and then, using machine learning 
techniques, prioritizes the data based on criteria set by the 
science team. This prioritization can organize data for 
transmission back to Earth or search for specific targets 
specified by the science team. If one of these targets 
appears, the system attempts to act on the new science 
opportunity by taking new instrument measurements. The 
AEGIS technology focuses on this second task of using 
onboard data analysis to acquire new instrument data on 
science targets, typically rocks, which have been identified 
in an opportunistic fashion after a drive. 

AEGIS performs seven major steps to autonomously 
acquire new data on an interesting science target. These 
steps are shown in Figure 1 and described below: 

1. Acquire an image with the MER navigation 
camera:  Scientists and other sequence team members select 
image parameters, such as the pointing direction and 
resolution, during the AEGIS sequencing process. The 
navigation camera is typically pointed at a terrain area 
where potential science targets may be in view.  

2. Analyze the navigation camera image for potential 
terrain targets: Targets for AEGIS typically correspond to 
rocks.  AEGIS uses the ROCKSTER algorithm to look for 
intensity edges in grayscale imagery.  This algorithm is 
further detailed in Section 3. 

3. Extract relevant target features: AEGIS calculates 
a set of target features (or properties) for each candidate 
rock. These properties include measures of size, albedo 
(reflectance), and shape.  

4. Prioritize targets and select top target: This 
component uses a prioritization algorithm to analyze rock 
property data and determine a top candidate. Scientists 
provide a “target rock signature” in the command sequence. 
 This signature specifies what property values are of interest 
in the local terrain.  Example signatures are “high albedo,” 
“round shape,” “large rocks with low albedo,” etc. 

5. Determine 3D target pointing requirements: After 
identifying the best scoring candidate rock, AEGIS selects a 
center point on the target using an inscribed circle method.   

6. Point remote sensing instrument:  AEGIS points 
the panoramic cameras at the new target using the resulting 
center point. 

7. Acquire new data: AEGIS then acquires additional 
data with the panoramic cameras. The ground sequencing 
team can select the exact filters and other imaging 
parameters to use for each individual run. Typical command 
sequences take a quarter-framed, multiple filter image with 
both left and right cameras. The rover downlinks these 
opportunistic images with other standard data products. 

3. ROCKSTER  

To identify potential targets, primarily rocks, of interest, the 
AEGIS system employs the Rock Segmentation Through 
Edge Regrouping (ROCKSTER) algorithm [3].  This section 
provides an overview of the target detection algorithm in its 
original serial form.  Section 5 details the parallelization of 
the algorithm on the Tilera TILE64TM. 

ROCKSTER focuses on the intensity of edges in grayscale 
imagery and connecting them to form closed contours.  
Existing MER rover engineering instrument packages and 
compute resources drove the choice of input data format 
and the level of processing applied to images.  The MER 
navigation cameras produce 1024x1024 grayscale images at 
12 bits per pixel [4].  Navigation camera images are quick 
to collect (30 seconds) and are acquired frequently during 
rover drives.  As previously described, the MER compute 
element is a RAD6000 flight processor capable of executing 
20 millions of instructions per second (MIPS).  The entire 
AEGIS system, and in particular the ROCKSTER subsystem, 
is designed to operate efficiently on this processor.  
Efficient operation includes sharing compute resources with 
the always-running rover flight software, which is 
responsible for vehicle health and safety, telemetry, and 
communication. 
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ROCKSTER locates edges in an image of the terrain taken by 
one of the navigation cameras using a process similar to the 
well-known Canny edge detection algorithm [5].  In 
particular, the input image is first smoothed, using a 5x5 
Gaussian kernel, to reduce the detection of small, spurious 
edges. Then central difference kernels are used to estimate 
the intensity gradient in the horizontal and vertical 
directions. Ridges in the intensity gradient are linked 
together using non-maximum suppression, hysteresis 
thresholding, and edge-following to produce a set of 
contours. 

Unfortunately, this initial set of contours does not directly 
provide a usable segmentation of the rocks from the 
background due to various problems, including: (1) 
spurious contours from the sky-ground boundary (horizon 
line), texture within individual rocks, and texture present in 
the background, (2) incorrect linking choices at the 
junctions between contours, (3) and unclosed contours 
around an object due to gaps in the gradient information 
(for example, areas along the rock boundary where the rock 
intensity and background intensity are too close to reliably 
separate). ROCKSTER attempts to resolve these problems by 
splitting the initial contours into low-curvature fragments.  
A gap-filling mechanism is then applied to add new contour 
fragments between existing fragment endpoints.  The final 
step is to regroup the edge fragments into coherent 
contours, which is accomplished through background 
flooding.  Conceptually, water is poured into the image 
from the sides but the water is not allowed to cross over any 
edge fragments; thus, regions that are totally enclosed by 
edge fragments remain “dry” while other areas become 
“wet.”  Extracting contours around the dry areas yields the 
final rock segmentation (Figure 2). 

 

Figure 2 – ROCKSTER  (Serial) 

ROCKSTER operates on grayscale intensity images by 
performing Canny-like edge detection and linking, 
followed by salient point determination, splitting, and 
gap-filling.  To remove salt-and-pepper noise, 
morphology operations are performed on flood-filled 
binary mask image.  Final rock and other target 
contours are extracted from this binary image. 

4. TILERA MULTICORE PLATFORM 

Hardware 

The Tilera TILE64TM runs at 750 MHz and has a parallel 
architecture with 64 processing elements (PEs) arranged in 
an 8x8 grid. Each PE is a full-featured processor, with a 32-
bit arithmetic logic unit and a three-way Very Long 
Instruction Word (VLIW) architecture allowing up to three 
instructions per cycle.  A single PE contains eight kilobytes 
of instruction L1 cache, eight kilobytes of data L1 cache, 
and 64 kilobytes of combined L2 cache.  The cache 
coherency mechanisms on the TILE64TM also allow for a 
virtual L3 cache, where each PE can access the contents of 
any other PE’s L2 cache. Each PE also contains its own 
Direct Memory Access (DMA) engine and Translation 
Lookaside Buffer (TLB) allowing memory virtualization 
and the ability to run a modern operating system on each 
core.  Processing elements are connected to their four 
nearest neighbors by five data channels. There are four 
external double data rate (DDR2) memory channels, and 
each processor can access external memory directly without 
explicit user code to transfer messages. The external 
memory architecture is monolithic and flat, as a specific 
memory location has the same physical address on every 
PE. The processor also includes multiple input/output (I/O) 
ports, including two Peripheral Component Interconnect 
Express (PCIe) interfaces, multiple Serial/Deserializer 
(SERDES) interfaces, General Purpose I/O, and Xilinx 10 
Gigabit Attachment Unit Interface (XAUI). [6] 

For this study, an off-the-shelf evaluation board from Tilera 
was used.  The evaluation board was a full-length PCIe 
form factor board containing a TILE64TM processor, two 
gigabytes of DDR2 random access memory (RAM), a PCIe 
interface, and all the high speed interfaces brought out to 
connectors. The gigabit Ethernet interface is brought out 
through a 12 port gigabit Ethernet switch. There is also an 
on-board non-volatile RAM that allows the board to run as 
either a daughtercard in a desktop system, or as a standalone 
single board computer booting into Linux. 

Development environment 

Tilera provides a software architecture based on Linux and 
the GNU toolchain. No changes were required to compile 
the ROCKSTER algorithm for the Tilera as a non-parallel 
application. The toolchain includes the standard GNU C and 
C++ compilers as well as all debugging, profiling, and 
object manipulation tools. The development system also 
includes a full-featured Linux based operating system with 
all of the standard libraries. Any application written for a 
Linux system can be simply re-compiled and can run on the 
Tilera system with little or no change. A straightforward 
compile of the original code, however, produced a binary 
file capable of running on only a single Tilera processing 
element. The existing ROCKSTER code base had to be 
rewritten to make use of the Tilera architecture and meet the 
runtime requirements. [7] 
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Space Flight Qualification 

The National Reconnaissance Office (NRO) has for several 
years funded the OPERA program to develop MAESTRO, a 
radiation hardened by design version of the TILE64TM with 
additional features such as a dual precision IEEE-754 
floating-point unit and hardened I/O features. The project is 
mature, and is currently testing MAESTRO, with a schedule 
to complete a 49-core version by the end of 2010. 

The MAESTRO processor is currently projected to run at 
300 MHz as opposed to the COTS 750 MHz.  Inclusion of 
the IEEE-754 floating-point hardware unit will compensate 
for part of the clock speed discrepancy between the 
TILE64TM and MAESTRO processors.  The Tilera 
TILE64TM uses software-emulated floating-point.  While the 
issues of floating-point and clock speeds could have an 
impact on the ROCKSTER performance numbers presented in 
Section 6, as we have explained in Section 5, we have made 
a significant effort to reduce ROCKSTER’s use of floating-
point operations, leaving only a difference in clock speed 
between the two processors. 

5. ROCKSTER PARALLELIZATION 

ROCKSTER presents many possible avenues for 
parallelization.  In this section, we describe the 
parallelization approaches we considered, their motivation, 
and respective tradeoffs.  After each approach is outlined, 
we provide implementation details.  In the next Section we 
present our performance findings for our preferred 
approach. 

One possible parallelization strategy is quite general and 
requires no algorithm modifications whatsoever.  The MER 
(and future) rovers’ camera hardware can acquire images 
much faster than onboard software can process them.  With 
operating system level process (or thread) partitioning for 
multicore, it is relatively easy to run a new and separate 
instance of ROCKSTER on an idle core whenever a new 
image is acquired.  In the case of a MER rover, a navigation 
camera image has a 45 degree FOV and requires about 30 
seconds to acquire.  Therefore, a full 360 panorama could 
be analyzed for rocks of interest using only eight of the 
TILE64TM 64 cores in four minutes plus the amount of time 
required for ROCKSTER to execute on a single processor 
core.  The approach applies equally well to other onboard 
cameras.  For instance, the high-resolution MER panoramic 
camera has a 16 degree FOV and a filter wheel to image at 
multiple wavelengths.  While we implemented this type of 
parallel processing on the TILE64TM, the scaling achieved 
exactly matches the theoretical optimum, and therefore is 
not particularly interesting.  We were more interested in 
understanding what benefits could be gained from a deeper 
algorithmic parallelization. 

Moving-up the parallelization sophistication scale, the next 
seemingly simple strategy leverages fine-grained data 

parallelism.  The smoothing, edge detection, and 
morphology operations at the heart of ROCKSTER are 
agnostic to the content of the image and more importantly, 
the image size.  Therefore, it is quite natural to divide an 
image into subimages and process each subimage through 
the major phases of ROCKSTER on a separate core (Figure 
3).  What distinguishes this approach from the one 
previously described is that the ROCKSTER is cognizant of 
the parallelization and is therefore responsible for dividing 
the image into subimages, assigning subimages to each 
core, and aggregating rock detections after each subimage 
has been processed.  Such tight algorithmic parallelism 
offers opportunities for load-balancing (e.g. subimages 
containing mostly sky will require less processing overall) 
and is required to address more challenging implementation 
issues like connecting rock contours that span subimage 
boundaries.  This latter issue requires communication 
among multiple cores. 

The previous two strategies have both emphasized data 
parallelism.  Indeed, our choice of ROCKSTER was 
motivated partly by its natural fit to a data-parallel 
algorithm decomposition and our desire to gain experience 
with data parallelism in a multicore environment.  Still, we 
would be remiss if we did not at least mention the 
possibility of a task-parallel decomposition.  The ROCKSTER 
edge detection algorithm is amenable to a systolic-array like 
computation where the Gaussian smoothing kernel and 
gradient edge kernels are decomposed into individual pixel-
level filters run on each core.  For instance, edge detection, 
although currently performed with a central difference 
operator, could be decomposed into separate Sobel 
horizontal and vertical kernels and run in parallel.  While 
we have begun to investigate this parallelization strategy, 
our work in this area is still in-progress. 

 

Figure 3 –ROCKSTER (Parallel) 

Parallel ROCKSTER divides the input image into 
subimage strips or tiles and runs the major phases of 
ROCKSTER on each core.  Challenges include choosing 
optimal subimage sizes, allocating to cores (load-
balancing), and communication of contours across cores 
during edge linking. 

Implementation 

As Figure 3 depicts, images may be split into either 
subimage strips or tiles.  Dividing the input images into 
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strips required very few changes to ROCKSTER image 
kernels as they are optimized to work across image columns 
and images are stored internally in row-major (row pixels 
contiguous) format.  However, we quickly discovered that, 
in practice, the long horizontal subimages cut across far too 
many rock boundaries when more than eight cores were 
used. 

Parallel ROCKSTER relies on the Message Passing Interface 
(MPI) [8] for communication across cores.  The MPI 
package was created specifically for Tilera and MAESTRO 
by USC’s ISI East as part of the OPERA program.  At a 
low-level, core-to-core communication is accomplished by 
using Tilera’s iLib (supported, but deprecated) or TMC C 
programming libraries.  ISI’s MPI is a particularly efficient 
implementation layered on top of the TMC library. 

Parallel ROCKSTER can utilize either a shared memory 
model or a separate partition of memory per core.  Shared 
memory serves only to reduce the initial overhead 
associated with MPI data passing.  At the level of 
implementation, ROCKSTER image operations are restricted 
to the subimage assigned to that core.  For shared memory, 
we use a TMC application programming interface (API) call 
to receive an initial pointer to shared memory.  From then 
on, all application logic treats the pointer as a vanilla C 
pointer; no special access APIs are required.  We have not 
studied the tradeoffs in shared versus local memory.  
Similarly, we have not focused on load balancing with 
respect to the four memory ports on the Tilera chip (each 
port is assigned to a specific subset of cores).  As our initial 
results indicate, optimizing memory access patterns is 
worthy of further study. 

Floating-Point Operations 

Our initial port of serial ROCKSTER to single Tilera 
TILE64TM core was unexpectedly slow.  That is, runtime 
was not commensurate with the 750 MHz per-core clock 
speed.  As part of their standard development environment, 
Tilera has ported the open-source oProfile runtime profiling 
tool to their platform.  We used oProfile to investigate the 
cause of the slow runtime.  The culprit was ROCKSTER’s 
heavy use of floating-point operations. 

As mentioned previously Tilera processors do not possess 
floating-point hardware.  Instead all floating-point data 
types and operations are emulated in software.  Tilera’s 
customized GCC-based development tool chain makes 
floating-point software emulation completely transparent to 
software developers.  The drawback, of course, is the 
hidden complexity of software emulation can come at the 
cost of performance. 

In the case of ROCKSTER, the software-emulated floating-
point performance hit was extreme.  ROCKSTER spent nearly 
75% of its TILE64TM single-core runtime performing 
floating-point operations in software.  Since the emulation 

is CPU-bound, we were concerned any performance and 
scaling numbers obtained after ROCKSTER parallelization 
would be skewed and not directly comparable to the 
radiation hardened 49 core MAESTRO processor, which 
will contain a floating-point coprocessor per core.  As a 
result, we made a decision early on in our development to 
convert ROCKSTER to integer operations and data types 
where possible.  This effort was particularly time 
consuming but paid dividends in the end.  After conversion, 
ROCKSTER now spends less-than 10% of its total TILE64TM 
runtime performing floating-point operations in software. 

6. RESULTS 

In this Section we present overall performance and scaling 
numbers for both serial and parallel ROCKSTER across a 
large, representative set of MER navigation camera images. 

As part of the AEGIS development effort, we curated a set 
of 116 MER navigation camera images from the mission’s 
surface operation.  The images form a representative sample 
of Martian terrain types encountered by the Spirit and 
Opportunity rovers and are classed according to the 
predominant geologic feature displayed in the image (e.g. 
cobbles, outcrop, and wind-swept dunes).  The original 
purpose of the image set was to tune AEGIS parameters 
prior to surface operations.  Thereafter the images and 
corresponding rock detections were the basis of a regression 
test set.  This same set of images was used for both serial 
and parallel ROCKSTER to assess overall performance and 
scaling with increasing numbers of processor cores. 

Floating-Point versus Integer Operations 

The conversion of the majority of ROCKSTER’s floating-
point operations to primarily integer-only operations 
reduced the average TILE64TM single-core runtime by an 
average of five fold (Figure 4, images are ordered by 
complexity).  The TILE64TM does not have hardware 
accelerated floating-point, whereas the space-flight 
qualified MAESTRO processor contains a floating-point 
coprocessor per core.  In order to ascertain how parallel 
ROCKSTER performance on TILE64TM would map to 
MAESTRO hardware, factoring-out the contribution of 
CPU-bound, software-emulated floating-point operations 
was essential. 
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Figure 4 – ROCKSTER Floating-Point vs. Integer 

The conversion of the majority of ROCKSTER’s floating-
point operations to primarily integer operations reduced 
single-core TILE64TM runtime by an average of fivefold. 
 Each point along the x-axis represents a specific MER 
navigation camera image and is ordered by increasing 
runtime.  The y-axis is runtime in seconds. 

 
Parallel Performance and Scaling 

We used the MER navigation camera regression test set 
described previously to assess both the overall performance 
of parallel ROCKSTER and the scaling achieved with 
increasing numbers of cores.  Figure 5 shows runtimes for 
1, 2, 4, 8, 16, and 32 cores, with images ordered by 
complexity.  Table 1 shows both the average performance 
increase over a single core and the average runtime.  For 32 
cores, parallel ROCKSTER achieved nearly a 10-fold increase 
in runtime performance. 

 

 

Figure 5 – Parallel Integer ROCKSTER Runtimes 

Parallel Integer ROCKSTER runtimes for 1, 2, 4, 8, 16, 
and 32 cores operating on image strips are plotted 
above.  The x-axis represents a specific MER navigation 
camera image and is ordered by increasing runtime.  
The y-axis is runtime in seconds. 

Table 1 – ROCKSTER FtesRuntimes and Speedup Factors 

Number of Cores 
 1 2 4 8 16 32 
Average speedup 
factor per image 
(versus single core) 

1 1.8 3.3 5.5 8.0 9.7 

Average runtime, 
all 116 MER 
Navcam images 

2.9
s 

1.6
s 

0.9
s 

0.5
s 

0.4
s 

0.3
s 

Parallel Integer ROCKSTER average speedup factor 
compared to a single core (first row) and average 
runtime across all 116 MER navigation camera images 
in our regression test set (second row). For 32 cores, 
parallel ROCKSTER achieved nearly a 10-fold increase in 
runtime performance. 

 

The runtimes for parallel ROCKSTER exhibit an interesting 
jagged structure from one run to the next after the 80th 
image.  The x-axis is ordered by runtime, which is 
proportional to the overall complexity of the scene in terms 
of total number of edges.  With increasing scene 
complexity, and smaller subimages, ROCKSTER is allowed to 
find a greater number of potential targets in some 
subimages.  This is due to an intrinsic limit in the total 
number of targets ROCKSTER can track at any one time.  
This limit is a vestige of the memory constraints of the 
MER rovers.  After a certain scene complexity threshold is 
passed, the number of targets found per subimage surpasses 
the intrinsic limit, which leads to greater variability in 
runtimes.  For assessing only scalability, not overall 
performance, it is best to ignore the runtime variability past 
the 80th image.  We mention this detail here only to 
illustrate one of the many subtle, algorithm-specific issues 
that are often encountered during parallelization and 
scalability studies.   

An order of magnitude decrease in processing time certainly 
speaks to the benefits of multicore processing for this and 
similar onboard autonomy applications.  The performance 
improvement is more dramatic when compared to current 
ROCKSTER runtimes on the surface of Mars.  With a full, 
always-running flight software load, ROCKSTER often takes 
between 10–15 minutes to run on the MER RAD6000 20 
MIPS processor.  Utilizing half of the available TILE64TM 
cores (e.g. reserving the remaining cores for other flight 
software tasks), this runtime is reduced to 0.3 seconds.  
Since the MAESTRO processor will operate at 40% the 
clock speed of the TILE64TM, it may be appropriate to scale 
reported runtimes by a factor of 2.5. 
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The performance gains we achieved through ROCKSTER 
parallelization are impressive, but still fall short of the 
theoretical optimum.  Figure 6 shows ideal versus actual 
speedup as a function of cores.  The achieved speedup curve 
suggests ROCKSTER performance asymptotes at 
approximately 10-fold.  While we have not fully 
investigated the reason for actual versus theoretical 
performance discrepancy, our initial profiling suggests both 
memory and cache bottlenecks.  As part of MAESTRO tool 
development program, several TILE64TM/MAESTRO 
memory and cache profiling tools are available.  Hopefully 
these tools will prove value in testing our performance 
bottleneck hypothesis. 

Core-to-Core Communication 

Image data decomposition is a natural parallelization 
strategy for many machine vision applications.  While 
ROCKSTER is no exception, parallelization is not without its 
challenges.  Maintaining contour coherency across 
subimage boundaries, and therefore cores, is required to 
maximize rock detections.  This is especially true for large 
rocks, which tend to be scientifically interesting, yet are 
more likely to be divided among multiple subimages.  We 
have not completed an implementation of ROCKSTER that 
perfectly preserves rock edge contours across subimages.  
However, we have assessed the communication overhead 
required for parallel ROCKSTER to transfer edge information 
from one core to its neighbor.  Figure 7 shows messages per 
image, across number of cores. Although not shown, the 
messages required for image strips (as opposed to tiles) is 
three times greater on average.  This finding is consistent 
with our empirical discovery that long horizontal subimages 
cut across far too many rock boundaries when more than 
eight subimages are used.  The Tilera architecture is such 
that data can be sent from one core to its neighbor in a few 
clock cycles.  Thus, we expect the impact of core-to-core 
communications to be negligible, even for the most 
demanding Martian terrains. 

Achieved vs Ideal Speedup
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Figure 6 – ROCKSTER Speedup versus Ideal 

Parallel Integer ROCKSTER average speedup versus the 
ideal speedup is plotted above. The achieved speedup 
curve suggests ROCKSTER performance asymptotes at 
approximately 10-fold.  Memory and cache bottlenecks 
are likely culprits, though investigation is ongoing. 

8. SUMMARY AND CONCLUSIONS 

We are adapting three high-level autonomy capabilities for 
current and future rover surface missions to a multicore 
processor and performing detailed performance evaluations. 
 We chose each capability for its unique, and 
complementary, parallelization challenges.  The first 
capability is the ROCKSTER rock and target detection 
algorithm, which is currently in use onboard the MER 
Opportunity rover as a critical part of the larger AEGIS 
onboard science autonomy system.  ROCKSTER has many of 
the hallmarks of a classic machine vision algorithm and as 
such, is well suited to data parallelization.  By parallelizing 
for the TILE64TM multicore platform, we have made a 
significant step towards flight qualifying the code for the 
radiation hardened 49-core MAESTRO processor based on 
the same Tilera architecture.  

After converting ROCKSTER to mostly integer operations, in 
order to cope with the lack of floating-point hardware on 
the TILE64TM, we observed an approximately 10-fold 
decrease in average algorithm runtime at a maximum of 32 
cores.  However, compared to the ideal performance 
improvement with perfect scaling, ROCKSTER performance 
falls short.  We suspect this is due to memory access 
patterns and inefficient use of cache, both of which are 
currently under detailed investigation.  Communicating 
edge information from one core to its neighbor is 
challenging from an implementation perspective, but initial 
results indicate the runtime impact will be minimal. 
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