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The GeoMap Initiative

MSSS/JPL/NASA MOC image

We want a 4D geological 
model of Mars, Earth, 
and other solid bodies.
We have (and are now 
collecting) much relevant 
data.
We just need an 
automated way to extract 
the desired knowledge.

http://www.msss.com/mars_images/moc/2003/09/30/2003.09.30a.E2100060.gif
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GeoMap Benefits
Mars: 

Aid site selection 
Interpretation of in-situ 
missions in context of a 
much more complete 
background 
understanding.
Ease of integration and 
comparison of new data 
with existing data

Earth:
Understand and protect 
our home planet

Granite Peak Geologic Map and cross section
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GeoMap Solution Ingest high-resolution 
image, hyperspectral, 
topographic, and in-situ 
data
Identify lithologic units 
based on clustering of 
texture and mineralogy
Recognize patterns in 
lithologic units.
Interpret these patterns in 
terms of 3D structure
Infer a relative chronology 
of events to create 3D 
structure
Enter into a database
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Outline of the rest of the talk

Review remote sensing data
Demonstrate plausibility of identifying lithologic
units based on mineralogy and texture
Digital Geologic Map Data Model
Demonstrate how to infer 4D from 2D by hand

Review prior art
Proposed Parameterized Stochastic Grammar 
approach
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Existing data - Earth

HYPERION - EO1, 30 m pixel, Mineral 
ID, 220 bands 0.4-2.5 um
ASTER – Terra, 14 bands, 0.5-12 um
AVIRIS  & HYDICE – Airborne Visible 
Infrared Imaging Spectrometer
SRTM – 30 m pixel topography
Ikonos – sub-meter pixel, visible
Landsat – 30 m pixel 8 bands
Others …
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Existing data - Mars

MOLA - MGS 
TES – MGS 3 km pixel, 6-50 um
MOC – 1 m pixel
THEMIS – Mars Odessy, 15 bands
MARSIS – Mars Express, several 
Km sub-surface radar
OMEGA – Mars Express, 100m 
mineral mapping spectrometer
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Future MRO mission

HiRISE – MRO 0.25-0.5 m pixel, stereo, 
visible
CRISM – MRO mineral ID spectrometer, 
0.4-4 um, 560 bands, 18 m pixel
SHARAD – MRO Up to 1 km sub-surface, 
15 m  vertical resolution, 0.3-3 km pixel
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Complementary data

Some observations are easy on 
the surface:

Small scale nature of a contact
Cliffs

Some observations are easy from 
orbit:

Large scale morphology and context
Note: Spectral data from orbit can be 
sensitive to crystal/grain size
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Mineral ID 

AVIRIS (Airborne 
Visible-Infrared 
Imaging 
Spectrometer) 
Processed to 
identify OH-, CO3-, 
and SO4- minerals
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Mineral ID 

AVIRIS (Airborne 
Visible-Infrared 
Imaging 
Spectrometer) 
Processed to   
identify Fe2+, Fe3+ 
minerals
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Digital Geological Data Model 

Under development 
by State Geologists 
and USGS
Digital Data Model for 
building a database 
containing the 
information in a 
Geological Map
http://geology.usgs.gov/dm
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4D from 2D

In geology, time and 
space are closely linked 
by the “Principle of 
Superposition”

First stated by Steno in 
1669

Younger sediments 
overlie older sediments 
unless the strata have 
been overturned.

Oldest

Youngestd
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b
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Corollaries 1

Cross-cutting 
relationships

Younger events (rock 
units) cut across older 
events (rock units)

Inclusion
Inclusions in 
sedimentary or 
igneous rocks are 
older than the 
surrounding rock unitOldest

Youngeste

c

b

a

b

c

d
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Corollaries 2

Unconformities
An unconformity (erosional 
surface) is younger than 
the truncated rocks and 
older than overlying rocks

Deformation
Deformation event is 
younger than deformed 
rocks

Others….

ab b cc

d
e

f
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Orientation of contacts: The 
Three point problem

Given a dipping 
boundary, and some 
topography, it is 
possible to work out 
the angle of the dip.
Also craters can be 
thought of as 
“boreholes”
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Cartoon Example

B
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Example: Harrisburg PA
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A sampling of previous work
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Algorithm for inferring time order 
of events from 2D map (Burns & Remfry 1976)

Construct a matrix in which each bed is 
represented once on the rows and columns. 
Wherever a time relationship between two beds 
is known, make an entry in the matrix such that 
row is older than column.
Triangularize the matrix by transposition of 
columns. Inability to triangularize indicates 
inconsistent information. 
Can then “fill in” much of rest of triangular matrix
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Pairwise relative age to Global 
Chronology

A C E B G F D
A 2
C 3
E 5
B 1
G 2
F 1 4
D 8

A B C D E F G
A 2 X X X X X
B 1 X X X X
C 3 X X X
D 8 X X
E 5 X
F 1 4
G
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Balanced Cross-section (Suppe 1983)

Deformed strata (folded 
and faulted) should 
occupy the same volume 
as they did in their 
original un-deformed 
state.
Humans are not good at 
this – computers are.
This is has been common 
practice for more than a 
decade. 
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Geological time concepts

Erosion introduces gaps
Simultaneous events
Finite duration events

Interval algebra (Allen 1984)
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IGIS: Computer-Aided Photogeologic
Mapping System (McGuffie et al 1989, Lang et al 1987)

Characteristics
User traced contacts on LANDSAT image
Computer solved 3 point problem for orientation 
through combination with digital elevation model
Could combine with seismic profile data
Could generate cross-sections

Part of NASA’s Sedimentary Basins Analysis 
Task, using Multispectral Remote Sensing as a 
Geologic Tool
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Geological time concepts (after Ady 1993, 
Allen 1984)

A before B; B after A
A meets B; B met-by A
A overlaps B; B 
overlapped-by A
A starts B; B started-by A
A during B;  B contains A
A finishes B; B finished-
by A
A equals B
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Spatiochronologic Reasoner (Ady 1993)

Characteristics
Given a digitized geologic map
GIS interface
Qualitative temporal object representation based on 
Allen 1983
Knowledge base of spatio-temporal ordering 
principles
Inconsistency checker
Inference system for propagation of constraints
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Frequently under-constrained

Erosion removes part of the record of the 
history written in the rocks
Sub-surface structure could be arbitrarily 
complex and still match 2D data.
There is usually a “simplest” solution 
consistent with the data 
Grammars, especially parameterized 
stochastic grammars, are a promising tool
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Stochastic Grammar

Origin in natural language analysis
Break down a sentence into sub-elements

Non-terminals – composed of other non-terminals 
and termanls (eg noun-phrase, verb-phrase)
Terminals

Relationships between elements build up 
interpretation
Relationships between elements may be 
probability rules, binary decision trees, complex 
physical models, or other
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Grammar using a sentence

The boy hit a ball.
<sentence>    <noun-phrase> <verb-phrase>
<noun-phrase>   <article><modified-noun>
<verb-phrase>   <verb> <noun-phrase>
<modified-noun>     <adjective><modified-noun> 
<article> a | the      
<noun>  boy | ball
<verb>    hit
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Geological Grammar building 
blocks

<submergent phrase> Sequence going from 
sediment with pebbles in it through sandstone to 
mudstone
<volcanic intrusive phrase> Igneous rocks 
surrounded by non-igneous. Surrounding rock 
contains minerals altered by hydrothermal fluids.
Existing models are 1 or 2 dimensional (Duane 
1996, 1999). We will need to generalize to 3 
spatial dimensions and time.
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Roadmap: Grammar
Phase 1: Develop a 
Stochastic Grammar to 
infer the sub-surface 
structure and chronology of 
events from an annotated 
map or image. Will involve 
extension of Stochastic 
Grammar concept to deal 
with notions of 3D spatial 
relationships, orientation, 
and chronology.
Chosen for phase 1 since 
we have limited prior art

Simmons 1983 
Ady 1993
Duane 1996, 1999
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Roadmap: Annotated Image
Phase 2: Adapt and extend 
software to identify lithologic 
units, estimate their 
orientation, and annotate the 
image.
Verification on Earth data
Chosen for phase 2 because 
systems exist that can do 
pieces of this job: 

Tetracorder (Clark & Swayze 
1995)
MESMA (Carvalho 2002)
ENVI (RSI)
IGIS (McGuffie et al 1989)

B
C

D

E
F

G

A
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Roadmap: Integration

Phase 3: Integrate the 
results of Phase 1 and 2 
to produce a prototype 
system ingesting raw 
image data, and 
producing a geologic map 
with 4D interpretation 
stored in a Digital 
Geologic Map Data 
Model database
Verification on Earth data
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Roadmap: Production 

Phase 4: Refine the 
system to be a 
production system 
and apply it to global 
data for Mars, Earth, 
and other solid 
planetary bodies.

Akna Montes mountain belt, Venus, 
http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/
mgn_c160n291_1.html

http://nssdc.gsfc.nasa.gov/imgcat/hires/mgn_c160n291_1.gif
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Summary

There is enough data to “cut our teeth”
We will soon have much more data
There are promising methods that with 
appropriate development could yield a 4D 
interpretation of remote sensing data
A 4D digital geological model would enable a 
new kind of integration of diverse datasets 
leading to greatly increased understanding of 
the planets
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